Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644252

RESUMEN

Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.

2.
Fish Physiol Biochem ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436567

RESUMEN

Marine pollution by nanoparticles (NPs) can be reprotoxic for fish and disturb successful reproduction of wild populations. In gilthead seabream (Sparus aurata), a mild effect on sperm motility was observed after exposure to high concentrations of silver NPs. Considering the great heterogeneity traits within a sperm sample, it is possible that NPs affect spermatozoa accordingly, modulating subpopulation profile. Thus, this work aimed to analyse NP effects in sperm motility in general and considering spermatozoa population structure, using a subpopulation approach. Seabream sperm samples from mature males were exposed for 1 h to increasing concentrations of titanium dioxide (1, 10, 100, 1000 and 10,000 µg L-1) and silver (0.25, 25 and 250 µg L-1) NPs, including Ag NP and Ag+, dissolved in a non-activating medium (0.9 % NaCl). Concentrations chosen include realistic (10-100 and 0.25 µg L-1, respectively, for TiO2 and Ag) and supra-environmental values. The mean particle diameter was determined as 19.34 ± 6.72 and 21.50 ± 8.27 nm in the stock suspension, respectively, for titanium dioxide and silver. After the ex vivo exposure, sperm motility parameters were determined using computer-assisted sperm analysis, and sperm subpopulations were later identified using a two-step cluster analysis. Results revealed a significant reduction in total motility after exposure to the 2 highest concentrations of titanium dioxide NPs, while curvilinear and straight-line velocities were not altered. Exposure to silver NPs (Ag NP and Ag+) lowered significantly total and progressive motilities at all concentrations, while curvilinear and straight-line velocities were significantly lower only at the highest concentration. Sperm subpopulations were also affected by the exposure to both titanium dioxide and silver NPs. In both cases, the highest levels of NPs triggered a decrease in the percentage of fast sperm subpopulations (38.2% in TiO2 1000 µg L-1, 34.8.% in Ag NP 250 µg L-1, and 45.0% in Ag+ 250 µg L-1 vs 53.4% in the control), while an increase on slow sperm subpopulations. A reprotoxic effect was proven for both NPs, but only at supra-environmental concentrations.

3.
Environ Toxicol Pharmacol ; 101: 104202, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385394

RESUMEN

The present study aimed to evaluate the reprotoxicity of environmental (0.25 µg.L-1) and supra-environmental (25 µg.L-1 and 250 µg.L-1) levels of silver nanoparticles (Ag NP) on the Pacific oyster (Magallana gigas), by determining sperm quality. For that, we evaluated sperm motility, mitochondrial function and oxidative stress. To determine whether the Ag toxicity was related to the NP or its dissociation into Ag ions (Ag+), we tested the same concentrations of Ag+. We observed no dose-dependent responses for Ag NP and Ag+, and both impaired sperm motility indistinctly without affecting mitochondrial function or inducing membrane damage. We hypothesize that the toxicity of Ag NP is mainly due to adhesion to the sperm membrane. Blockade of membrane ion channels may also be a mechanism by which Ag NP and Ag+ induce toxicity. The presence of Ag in the marine ecosystem is of environmental concern as it may affect reproduction in oysters.


Asunto(s)
Nanopartículas del Metal , Ostreidae , Masculino , Animales , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Ecosistema , Motilidad Espermática , Semen , Iones
4.
Fish Physiol Biochem ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083967

RESUMEN

During the spring of 2022, several endangered leuciscid species (Anaecypris hispanica, Squalius aradensis, Anachondrostoma Occidentale, and Iberochondrostoma lusitanicum) were sampled both at the Vasco da Gama aquarium facilities and in some rivers of the Algarve region, Portugal. Sperm samples were extracted by gentle abdominal pressure and sperm motion parameters were assessed for the first time in four species, using a computerized analysis system. The results obtained showed that spermatozoa kinetic patterns were similar for all 4 species, with high motility and velocity values after the sperm activation time and with a marked decrease after 20. On the other hand, sperm longevity was highly variable between species, with short longevities (around 40 s) for A. hispanica and S. aradensis, and longer longevities (100-120 s) for A. occidentale and I. lusitanicum, which could indicate a latitudinal pattern in terms of sperm longevity. At the same time, morphometric analysis was carried out for the four target species, revealing that spermatozoa showed similar sizes and shapes to other external fertilizers belonging to Leuscididae, with small spherical heads, uniflagellate, and without acrosomes. In addition, a short-term gamete storage trail was performed by diluting sperm in 1:9 (sperm:extender) and storing them at 4ºC. Although the results obtained were uneven among the species studied, the dilution and extender used generated motilities above 40% up to day 4 of storage in S. aradensis and I. lusitanicum, and up to days 1-2 in A. hispanica and A. occidentale, respectively. Finally, gamete cryopreservation trials were also carried out on these threatened species. Although cryopreserved samples showed significantly lower motility than fresh samples, some protocols generate acceptable percentages of viability, DNA integrity, and sperm motility in some species such as I. lusitanicum and A. occidentale. The data revealed that the protocol based on 10% DMSO plus 7.5% egg yolk generated the best results.This study is the first to assess the reproductive traits of wild and captive populations of endangered leuciscids endemic from the Iberian Peninsula, describing the spermatozoa kinetics and developing protocols for managing male gametes both in short- and long-term storage. Outcomes will provide new and useful tools to complement the management and conservation of ex situ breeding programs that are being developed for these four endangered species.

5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108202

RESUMEN

Type I diabetes is a prominent human pathology with increasing incidence in the population; however, its cause is still unknown. This disease promotes detrimental effects on reproduction, such as lower sperm motility and DNA integrity. Hence, the investigation of the underlying mechanisms of this metabolic disturbance in reproduction and its transgenerational consequences is of the utmost importance. The zebrafish is a useful model for this research considering its high homology with human genes as well as its fast generation and regeneration abilities. Therefore, we aimed to investigate sperm quality and genes relevant to diabetes in the spermatozoa of Tg(ins:nfsb-mCherry) zebrafish, a model for type I diabetes. Diabetic Tg(ins:nfsb-mCherry) males showed significantly higher expression of transcripts for insulin a (insa) and glucose transporter (slc2a2) compared to controls. Sperm obtained from the same treatment group showed significantly lower sperm motility, plasma membrane viability, and DNA integrity compared to that from the control group. Upon sperm cryopreservation, sperm freezability was reduced, which could be a consequence of poor initial sperm quality. Altogether, the data showed similar detrimental effects related to type I diabetes in zebrafish spermatozoa at the cellular and molecular levels. Therefore, our study validates the zebrafish model for type I diabetes research in germ cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Pez Cebra , Animales , Masculino , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Insulina/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Criopreservación , Insulina Regular Humana , Diabetes Mellitus Tipo 1/metabolismo , ADN/metabolismo
6.
Animals (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978519

RESUMEN

Physical complexity adds physical enrichment to rearing conditions. This enrichment promotes fish welfare and reduces detrimental characteristics that fish develop in captivity. Senegalese sole (Solea senegalensis) is an important species for European aquaculture, where it is reared in intensive conditions using fibreglass tanks. However, reproductive dysfunctions present in this species do not allow it to complete its life cycle in captivity. Recently, dominance behaviour has been studied to try to solve this problem. The present study aimed to assess the effect of sand as environmental enrichment in the dominance behaviour and brain mRNA abundance of Senegalese sole juveniles. Four tanks of sole (n = 48 fish in total) were established in two different environments (with and without sand). Juveniles were subjected to dominance tests of feeding and territoriality. Behaviours analysed by video recordings related to the distance from the food delivered and harassment behaviour towards other individuals (e.g., resting of the head on another individual). In both environments, dominant sole were the first to feed, displayed more head-resting behaviour and dominated the area close to the feeding point, where the events were reduced in fish maintained in the sand. mRNA expression related to differentiation of dopamine neurons (nr4a2) and regulation of maturation (fshra) were significantly upregulated in dominant fish in the sand environment compared to dominants maintained without sand. The use of an enriched environment may affect Senegalese sole dominance, enhance welfare and possibly advance future maturation.

7.
Aquat Toxicol ; 258: 106446, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907145

RESUMEN

Titanium dioxide nanoparticles (TiO2 NP) were reported to be reprotoxic in humans and fish. However, the effects of these NP on the reproduction of marine bivalves, namely oysters, remain unknown. Thus, a short-term (1 h) direct exposure of sperm of the Pacific oyster (Crassostrea gigas) to two TiO2 NP concentrations (1 and 10 mg.L-1) was performed, and sperm motility, antioxidant responses, and DNA integrity were evaluated. Although no changes occurred in sperm motility and the activities of the antioxidants, the genetic damage indicator increased at both concentrations, demonstrating that TiO2 NP affects the DNA integrity of oyster sperm. Although DNA transfer can happen, it does not fulfill its biological mission since the transferred DNA is not intact and may compromise the reproduction and recruitment of the oysters. This vulnerability of C. gigas sperm towards TiO2 NP highlights the importance of studying the effects of NPs exposure to broadcast spawners.


Asunto(s)
Crassostrea , Nanopartículas , Contaminantes Químicos del Agua , Animales , Humanos , Masculino , Contaminantes Químicos del Agua/toxicidad , Motilidad Espermática , Semen , Espermatozoides , ADN , Antioxidantes/farmacología
8.
Chemosphere ; 303(Pt 3): 135198, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35660050

RESUMEN

The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 µm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno/análisis , Ecosistema , Larva , Microplásticos/toxicidad , Plásticos/metabolismo , Polietileno/metabolismo , Contaminantes Químicos del Agua/análisis , Pez Cebra/metabolismo
9.
Cryobiology ; 106: 24-31, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523313

RESUMEN

Marine bivalves are valuable resources, however, some shellfish populations are endangered due to factors such as anthropogenic pressure, pathologies or lack of reproduction synchrony. Portuguese oyster (Crassostrea angulata) and striped venus clam (Chamelea gallina) have high socio-economic value and their endangered natural populations require rehabilitation. Cryopreservation is a valuable method for the preservation and management of genetic resources for aquaculture and restocking. Larvae cryopreservation is particularly valuable since diploid organisms are obtained upon thawing. The objective of this work was the establishment of C. angulata and C. gallina D-larvae cryopreservation through the selection of permeant cryoprotectant in the freezing solution, namely ethylene glycol (EG) and dimethyl sulfoxide (Me2SO). Cryoprotectants exposure showed that, in C. angulata, Me2SO promoted significantly higher incidence of abnormalities and enhanced glutathione reductase activity when compared to control (larvae without cryoprotectant exposure) or even to EG treatment. However, for both species, EG significantly reduced D-larvae average path velocity (VAP). In C. angulata post-thaw D-larvae, EG treatment promoted significantly lower motility and velocity when compared to control and Me2SO treatment. Superoxide dismutase (SOD) activity showed a reduction in C. angulata post-thaw D-larvae when compared to control, which was compensated by the enhancement of glutathione peroxidase (GPX) activity. In C. gallina post-thaw D-larvae, only motility, velocity and SOD activity were significantly lower than control. Therefore, the best treatment to cryopreserve C. angulata D-larvae was EG while for C. gallina Me2SO produced better results. This work established for the first time D-larvae cryopreservation protocols for C. angulata and C. gallina.


Asunto(s)
Crassostrea , Criopreservación , Animales , Criopreservación/métodos , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Glicol de Etileno/farmacología , Larva , Superóxido Dismutasa
10.
Front Physiol ; 12: 749735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899383

RESUMEN

Sperm cryopreservation can be a helpful tool in reproductive management and preservation of biodiversity. However, the freezing methodologies lead to some damage in structure and function of cells that may compromise post-thaw sperm activity. Cryoprotectant supplementation with sugars proved to be a successful strategy to reduce cryodamage in sperm of several species, once allowing to stabilize the plasma membrane constituents. Therefore, this study intends to understand the effects of sugars in the plasma membrane, DNA integrity, and oxidative response during Portuguese oyster sperm cryopreservation. Three cryoprotectants solutions with an initial concentration of 20% dimethyl sulfoxide (DMSO) and 20% DMSO complemented with 0.9 M trehalose or sucrose in artificial seawater were employed. Sperm samples of mature males were individually collected and diluted 1:10 (v/v) in artificial seawater followed by addition of cryoprotectants [1:1 (v/v)]. Thereafter, sperm was loaded into 0.5 ml straws, maintained at 4°C for 10 min, frozen in a programmable biofreezer at -6°C/min from 0 to -70°C, and stored in liquid nitrogen. Samples were thawed in a 37°C bath for 10 s. Several techniques were performed to evaluate post-thaw quality. Sperm motility and DNA integrity were analyzed by using computer-assisted sperm analysis (CASA) software and comet assay. Flow cytometry was employed to determine membrane and acrosome integrity and to detect intracellular reactive oxygen species (ROS) and apoptosis activity. Lipid peroxidation was determined by malondialdehyde (MDA) detection by using spectrophotometry. Sperm antioxidant capacity was evaluated through glutathione peroxidase, glutathione reductase, and superoxide dismutase. Motility was not affected by the extenders containing sugars; these compounds did not reduce the DNA damage. However, both the trehalose and sucrose protected plasma membrane of cells by increasing cell viability and significantly reducing MDA content. The same finding was observed for the ROS, where live cells registered significantly lower levels of ROS in samples cryopreserved with sugars. The activity of antioxidant enzymes was higher in treatments supplemented with sugars, although not significant. In conclusion, the addition of sugars seems to play an important role in protecting the Crassostrea angulata sperm membrane during cryopreservation, showing potential to improve the post-thaw sperm quality and protect the cells from cryoinjuries.

11.
Methods Mol Biol ; 2180: 413-425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797424

RESUMEN

Marine invertebrates represent the vast majority of marine biodiversity; they are extremely diverse playing a key role in marine ecosystems, thus playing an important role at the socioeconomic level. Some invertebrates such as sea urchins, ascidians, and horse-shoe crabs are very well-known model organisms for research and biocompound discovery. In this chapter we revisit the importance of cryopreservation for the conservation and rational use in research, fisheries management, or aquaculture and provide comprehensive protocols for the cryopreservation of sperm, embryos, and larvae.


Asunto(s)
Criopreservación/veterinaria , Crioprotectores/farmacología , Embrión no Mamífero/citología , Larva/citología , Preservación de Semen/veterinaria , Espermatozoides/citología , Animales , Organismos Acuáticos , Criopreservación/métodos , Embrión no Mamífero/efectos de los fármacos , Invertebrados , Larva/efectos de los fármacos , Masculino , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos
12.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260781

RESUMEN

Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.


Asunto(s)
Peces Planos/genética , Peces Planos/fisiología , Kisspeptinas/farmacología , MicroARNs/sangre , Reproducción/genética , Animales , Secuencia de Bases , Supervivencia Celular/efectos de los fármacos , Femenino , Peces Planos/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Gonadotropinas/sangre , Masculino , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos
13.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396234

RESUMEN

In recent years, the effects of novel antioxidants have played an important role in the research focusing on fish cell protection. As food demand grows, aquaculture production becomes more intensive, and fish are more exposed to oxidative stress conditions, like high densities, temperature shifting, frequent fish handling and samplings, and prophylactic or disease treatments, which expose fish to a different environment. Particularly in reproduction, germ cells lose antioxidant capacity with spermatogenesis, as spermatozoa are more prone to oxidative stress. Antioxidants have been used in a variety of fish physiological problems including in reproduction and in the establishment of cryopreservation protocols. From the most used antioxidants to natural plant food and herbs, and endogenously produced antioxidants, like melatonin, a review of the literature available in terms of their effects on the protection of fish spermatozoa is presented here in a classified structure. Several direct and indirect approaches to improve gamete quality using antioxidants administration are mentioned (through feed supplementation or by adding in cryopreservation media), as well as factors affecting the efficiency of these molecules and their mechanisms of action. Special attention is given to the unclear melatonin pathway and its potential scavenger activity to prevent and counteract oxidative stress damage on fish spermatozoa.

14.
Artículo en Inglés | MEDLINE | ID: mdl-31812674

RESUMEN

The kisspeptin system, a known regulator of reproduction in fish, was investigated during two key phases within the gilthead seabream (Sparus aurata) life cycle: protandrous sex change and larval ontogeny. Seabream specific partial cDNA sequences were identified for two key targets, kissr4 and kiss2, which were subsequently cloned and qPCR assays developed. Thereafter, to examine association in expression with sex change, a group of adult seabream (2+ years old) undergoing sex change were sampled for gene expression at two different periods of the annual cycle. To study the kisspeptin system ontogeny during early life stages, transcript levels were monitored in larvae (till 30 days-post-hatch, DPH) and post-larvae (from 30 till 140 DPH). During sex change, higher expression of kissr4 and kiss2 was observed in males when compared to females or individual undergoing sex change, this is suggestive of differential actions of the kisspeptin system during protandrous sex change. Equally, variable expression of the kisspeptin system during early ontogenic development was observed. The higher expression of kissr4 and kiss2 observed from 5 DPH, with elevations at 5-20 and 90 DPH for kissr4 and at 5, 10, 20, and 60 DPH for kiss2, is coincident with the early ontogeny of gnrh genes previously reported for seabream, and possibly related with early development of the reproductive axis in this species.


Asunto(s)
Trastornos del Desarrollo Sexual/metabolismo , Trastornos del Desarrollo Sexual/patología , Kisspeptinas/metabolismo , Dorada/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Kisspeptinas/genética , Larva , Masculino , Reproducción , Dorada/genética , Dorada/metabolismo
15.
Zebrafish ; 17(1): 27-37, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31851586

RESUMEN

Dietary phospholipids' (PLs) content, origin, and profile are known to affect fish development and reproductive performance, but their effects in zebrafish (Danio rerio) nutrition are still poorly investigated. Therefore, this study aimed to assess the effect of practical microdiets containing plant-based and marine PL sources in zebrafish growth, survival, skeletal development, and reproductive performance. Reproductive performance was evaluated according to sperm motility, number of eggs, egg morphometry, hatching rate, and offspring standard length at 5 days postfertilization (dpf). For this purpose, seven microdiets were used, where two control diets were tested along with a supplementation with soybean lecithin (SL) as a plant-based PL source, and krill oil (KO) and copepod oil (CO) as marine PL sources, or in combinations (SLCO and SLKO). KO supplementation decreased larval growth performance and induced severe skeletal anomalies. SL supplementation reduced sperm total motility but improved offspring length at 5 dpf. CO supplementation increased sperm motility and the number of spawned eggs. Our results showed that a careful selection of the origin of dietary PL sources for microdiet formulation is critical to ensure adequate skeletal development and reproductive success. This study contributes to the improvement of zebrafish microdiet formulation and optimization of zebrafish husbandry practices.


Asunto(s)
Crianza de Animales Domésticos/métodos , Fosfolípidos/metabolismo , Reproducción/efectos de los fármacos , Esqueleto/efectos de los fármacos , Pez Cebra/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta , Femenino , Masculino , Óvulo/efectos de los fármacos , Óvulo/fisiología , Fosfolípidos/administración & dosificación , Distribución Aleatoria , Esqueleto/crecimiento & desarrollo , Motilidad Espermática/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo
16.
Cryobiology ; 91: 115-127, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31605703

RESUMEN

The synergy obtained by the combination of cryoprotectants is a successful strategy that can be beneficial on the optimization of zebrafish sperm cryopreservation. Recently, a protocol was established for this species using an electric ultrafreezer (-150 °C) performing cooling rate (-66 °C/min) and storage within one step. The ultimate objective of sperm cryopreservation is to generate healthy offspring. Therefore, the objective of this study was to select the most adequate cryoprotectant combination, for the previously established protocol, that generate high quality offspring with normal skeletogenesis. Among the permeating cryoprotectant concentrations studied 12.5% and 15% of N,N-dimethylformamide (DMF) yielded high post-thaw sperm quality and hatching rates. For these two concentrations, the presence of bovine serum albumin (10 mg/mL), egg yolk (10%), glycine (30 mM) and bicine (50 mM) was evaluated for post-thaw sperm motility, viability, in vitro fertilization success and offspring skeletal development (30 days post fertilization). Higher concentration of permeating cryoprotectant (15%) decreased the incidence of deformed arches and severe skeletal malformations, which suggests higher capacity to protect the cell against cold stress and DNA damage. Extender containing 15% DMF with Ctrl, Bicine and egg yolk were the non-permeating cryoprotectants with higher post-thaw quality. The use of these compounds results in a reduction in vertebral fusions, compressions and severity of skeletal malformations in the offspring. Therefore, these extender compositions are beneficial for the quality of zebrafish offspring sired by cryopreserved sperm with -66 °C/min freezing rate. To the best of our knowledge, this is the first report on skeletal development of the offspring sired by cryopreserved sperm performed with different freezing media compositions in zebrafish.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Dimetilformamida/farmacología , Preservación de Semen/métodos , Pez Cebra/embriología , Albúminas/farmacología , Animales , Yema de Huevo , Congelación , Glicina/análogos & derivados , Glicina/farmacología , Masculino , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos
17.
Theriogenology ; 133: 161-178, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108371

RESUMEN

Artificial reproduction involves collection and handling of gametes in a way that secures their quality and maximizes the fertilization outcome. In addition to initial sperm quality, numerous steps can affect the final result of fertilization, from the sperm collection process until gamete mixing (or co-incubation) when the spermatozoon enters or fuses with the oocyte. In this review, we summarize the whole process of sperm handling, from collection until fertilization for fish, penaeid shrimp, bivalve mollusks and marine mammals. To obtain sperm from captive animals, techniques vary widely across taxa, and include stripping by abdominal massage or testis surgical removal in fish, spermatophore collection in penaeid shrimps, gonadal scarification or temperature shock in bivalve mollusks, and voluntary collection via positive reinforcement in mammals. In most cases, special care is needed to avoid contamination by mucus, seawater, urine, or feces that can either activate sperm motility and/or decrease its quality. We also review techniques and extender solutions used for refrigerated storage of sperm across the aforementioned taxa. Finally, we give an overview of the different protocols for in vivo and in vitro fertilization including activation of sperm motility and methods for gamete co-incubation. The present study provides valuable information regarding breeder management either for animal production or species conservation.


Asunto(s)
Organismos Acuáticos/fisiología , Manejo de Especímenes/veterinaria , Recuperación de la Esperma/veterinaria , Animales , Crassostrea , Peces , Inseminación Artificial/veterinaria , Masculino , Mamíferos , Penaeidae , Preservación de Semen/veterinaria , Manejo de Especímenes/métodos
18.
Biochim Biophys Acta Gen Subj ; 1863(1): 39-51, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30268730

RESUMEN

BACKGROUND: Vitamin K (VK) is a fat-soluble vitamin known for its essential role in blood coagulation, but also on other biological processes (e.g. reproduction, brain and bone development) have been recently suggested. Nevertheless, the molecular mechanisms behind its particular function on reproduction are not yet fully understood. METHODS: The potential role of VK on reproduction through nutritional supplementation in Senegalese sole (Solea senegalensis) was assessed by gonadal maturation and 11-ketosterone, testosterone and estriol plasma levels when fed with control or VK supplemented (1250 mg kg-1 of VK1) diets along a six month trial. At the end, sperm production and quality (viability and DNA fragmentation) were evaluated. Circulating small non-coding RNAs (sncRNAs) in blood plasma from males were also studied through RNA-Seq. RESULTS: Fish fed with dietary VK supplementation had increased testosterone levels and lower sperm DNA fragmentation. SncRNAs from blood plasma were found differentially expressed when nutritional and sperm quality conditions were compared. PiR-675//676//4794//5462 and piR-74614 were found up-regulated in males fed with dietary VK supplementation. Let-7g, let-7e(18nt), let-7a-1, let-7a-3//7a-2//7a-1, let-7e(23nt) and piR-675//676//4794//5462 were found to be up-regulated and miR-146a and miR-146a-1//146a-2//146a-3 down-regulated when fish with low and high sperm DNA fragmentation were compared. Bioinformatic analyses of predicted mRNAs targeted by sncRNAs revealed the potential underlying pathways. CONCLUSIONS: VK supplementation improves fish gonad maturation and sperm quality, suggesting an unexpected and complex regulation of the nutritional status and reproductive performance through circulating sncRNAs. GENERAL SIGNIFICANCE: The use of circulating sncRNAs as reliable and less-invasive physiological biomarkers in fish nutrition and reproduction has been unveiled.


Asunto(s)
Biomarcadores/sangre , MicroARNs/sangre , ARN Pequeño no Traducido/genética , Reproducción , Espermatozoides/metabolismo , Testosterona/sangre , Vitamina K/fisiología , Alimentación Animal , Animales , Supervivencia Celular , Fragmentación del ADN , Dieta , Suplementos Dietéticos , Regulación hacia Abajo , Peces Planos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Transducción de Señal
19.
Zebrafish ; 16(2): 189-196, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30523745

RESUMEN

Selection criteria for sperm cryopreservation are highly relevant in zebrafish since sperm quality is particularly variable in this species. Successful cryopreservation depends on high-quality sperm, which can only be ensured by the selection of breeders. Consequently, male selection and management are a priority to improve cryopreservation, and therefore, this study aimed to characterize optimal age and sperm collection frequency in zebrafish. For this purpose, males from wild type (AB) and from a transgenic line [Tg(runx2:eGFP)] were sampled at 6, 8, 12, and 14 months. For each age, sperm were collected at time 0 followed by samplings at 2, 7, and 14 days of rest. Sperm quality was assessed according to motility and membrane viability parameters. Quality assessment showed that Tg(runx2:eGFP) displayed significantly higher motility than AB and younger males showed higher motility in both lines. Sperm collection frequency affected membrane viability. While AB fish recovered sperm viability after 14 days of rest, Tg(runx2:eGFP) could not recover. Consequently, it may be important to study the sperm quality of each zebrafish line before sperm cryopreservation. Taking into consideration the results achieved in both lines, sperm collection should be performed between 6 and 8 months of age with a minimum collection interval of 14 days.


Asunto(s)
Membrana Celular/fisiología , Criopreservación/veterinaria , Manejo de Especímenes , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Pez Cebra/fisiología , Factores de Edad , Animales , Criopreservación/métodos , Masculino
20.
Fish Physiol Biochem ; 44(6): 1443-1455, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29654541

RESUMEN

Zebrafish sperm cryopreservation is a fundamental methodology to manage and back-up valuable genetic resources like transgenic and mutant strains. Cryopreservation usually requires liquid nitrogen for storage, which is expensive and hazardous. Our objective was to evaluate if electric ultrafreezers (- 150 °C) are a viable alternative for zebrafish sperm storage. Zebrafish sperm was cryopreserved in the same conditions (- 20 °C/min), stored either in liquid nitrogen or in an ultrafreezer, and thawed after 1 week, 1 month, and 3 months. Sperm motility, membrane integrity, and fertilization ability were assessed. There were no significant differences in motility and hatching rate throughout storage time. Additionally, we aimed at understanding if cryopreservation directly in an ultrafreezer (- 66 °C/min) could improve post-thaw sperm quality. Freezing at - 20 °C/min was performed as before, and compared to samples cryopreserved with a fast cooling rate by placing directly in an ultrafreezer (- 66 °C/min). Sperm quality was assessed according to motility, viability, DNA fragmentation, and apoptosis (annexin V). The - 66 °C/min cooling rate showed significantly higher membrane and DNA integrity, and lower number of cells in late apoptosis in comparison to the other treatments. This study showed that zebrafish sperm cryopreservation and storage in an ultrafreezer system is possible and a fast cooling rate directly in ultrafreezer improves post-thaw sperm quality.


Asunto(s)
Criopreservación/veterinaria , Congelación , Preservación de Semen/veterinaria , Motilidad Espermática , Pez Cebra/fisiología , Animales , Criopreservación/instrumentación , Criopreservación/métodos , Crioprotectores/química , Masculino , Análisis de Semen/veterinaria , Preservación de Semen/instrumentación , Preservación de Semen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...